Orthogeodesic Point-Set Embedding of Trees
نویسندگان
چکیده
Let S be a set of N grid points in the plane, and let G a graph with n vertices (n ≤ N). An orthogeodesic point-set embedding of G on S is a drawing of G such that each vertex is drawn as a point of S and each edge is a chain of horizontal and vertical segments with bends on grid points whose length is equal to the Manhattan distance of its end vertices. We study the following problem. Given a family of trees F what is the minimum value f(n) such that every nvertex tree in F admits an orthogeodesic point-set embedding on every grid-point set of size f(n)? We provide polynomial upper bounds on f(n) for both planar and non-planar orthogeodesic point-set embeddings as well as for the case when edges are required to be L-shaped chains. This report is an extended version of a paper by the same authors that is to appear in [6].
منابع مشابه
An Improved Bound for Orthogeodesic Point Set Embeddings of Trees
In an orthogeodesic embedding of a graph, each edge is embedded as an axis-parallel polyline that forms a shortest path in the `1 metric. In this paper we consider orthogeodesic plane embeddings of trees on grids. A grid is implicitly defined by a set P ⊂ R of points. Denote by ΓP the arrangement induced by all horizontal and vertical lines that pass through a point from P . When embedding a gr...
متن کاملUpward Point-Set Embeddability
We study the problem of Upward Point-Set Embeddability, that is the problem of deciding whether a given upward planar digraph D has an upward planar embedding into a point set S. We show that any switch tree admits an upward planar straight-line embedding into any convex point set. For the class of k-switch trees, that is a generalization of switch trees (according to this definition a switch t...
متن کاملPoint-Set Embedding of Trees with Edge Constraints
Given a graph G with n vertices and a set S of n points in the plane, a point-set embedding of G on S is a planar drawing such that each vertex of G is mapped to a distinct point of S. A geometric point-set embedding is a point-set embedding with no edge bends. This paper studies the following problem: The input is a set S of n points, a planar graph G with n vertices, and a geometric point-set...
متن کاملComplexity of Planar Embeddability of Trees inside Simple Polygons
Geometric embedding of graphs in a point set in the plane is a well known problem. In this paper, the complexity of a variant of this problem, where the point set is bounded by a simple polygon, is considered. Given a point set in the plane bounded by a simple polygon and a free tree, we show that deciding whether there is a planar straight-line embedding of the tree on the point set inside the...
متن کاملPlane 3-trees: Embeddability & Approximation
We give anO(n log n)-time linear-space algorithm that, given a plane 3-tree G with n vertices and a set S of n points in the plane, determines whether G has a point-set embedding on S (i.e., a planar straight-line drawing of G where each vertex is mapped to a distinct point of S), improving the O(n)-time O(n)-space algorithm of Moosa and Rahman. Given an arbitrary plane graph G and a point set ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011